Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
Clin Epigenetics ; 16(1): 49, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549146

RESUMO

Acute lymphoblastic leukemia (ALL) is the most prevalent cancer in children, and despite considerable progress in treatment outcomes, relapses still pose significant risks of mortality and long-term complications. To address this challenge, we employed a supervised machine learning technique, specifically random survival forests, to predict the risk of relapse and mortality using array-based DNA methylation data from a cohort of 763 pediatric ALL patients treated in Nordic countries. The relapse risk predictor (RRP) was constructed based on 16 CpG sites, demonstrating c-indexes of 0.667 and 0.677 in the training and test sets, respectively. The mortality risk predictor (MRP), comprising 53 CpG sites, exhibited c-indexes of 0.751 and 0.754 in the training and test sets, respectively. To validate the prognostic value of the predictors, we further analyzed two independent cohorts of Canadian (n = 42) and Nordic (n = 384) ALL patients. The external validation confirmed our findings, with the RRP achieving a c-index of 0.667 in the Canadian cohort, and the RRP and MRP achieving c-indexes of 0.529 and 0.621, respectively, in an independent Nordic cohort. The precision of the RRP and MRP models improved when incorporating traditional risk group data, underscoring the potential for synergistic integration of clinical prognostic factors. The MRP model also enabled the definition of a risk group with high rates of relapse and mortality. Our results demonstrate the potential of DNA methylation as a prognostic factor and a tool to refine risk stratification in pediatric ALL. This may lead to personalized treatment strategies based on epigenetic profiling.


Assuntos
Metilação de DNA , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Canadá , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Resultado do Tratamento , Prognóstico , Recidiva
3.
Br J Haematol ; 204(4): 1529-1535, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411250

RESUMO

Chronic myelomonocytic leukaemia (CMML) is a rare haematological disorder characterized by monocytosis and dysplastic changes in myeloid cell lineages. Accurate risk stratification is essential for guiding treatment decisions and assessing prognosis. This study aimed to validate the Artificial Intelligence Prognostic Scoring System for Myelodysplastic Syndromes (AIPSS-MDS) in CMML and to assess its performance compared with traditional scores using data from a Spanish registry (n = 1343) and a Taiwanese hospital (n = 75). In the Spanish cohort, the AIPSS-MDS accurately predicted overall survival (OS) and leukaemia-free survival (LFS), outperforming the Revised-IPSS score. Similarly, in the Taiwanese cohort, the AIPSS-MDS demonstrated accurate predictions for OS and LFS, showing superiority over the IPSS score and performing better than the CPSS and molecular CPSS scores in differentiating patient outcomes. The consistent performance of the AIPSS-MDS across both cohorts highlights its generalizability. Its adoption as a valuable tool for personalized treatment decision-making in CMML enables clinicians to identify high-risk patients who may benefit from different therapeutic interventions. Future studies should explore the integration of genetic information into the AIPSS-MDS to further refine risk stratification in CMML and improve patient outcomes.


Assuntos
Leucemia Mielomonocítica Crônica , Leucemia , Síndromes Mielodisplásicas , Humanos , Leucemia Mielomonocítica Crônica/diagnóstico , Leucemia Mielomonocítica Crônica/genética , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Prognóstico , Inteligência Artificial , Síndromes Mielodisplásicas/terapia , Síndromes Mielodisplásicas/tratamento farmacológico , Medição de Risco
5.
Front Oncol ; 13: 1275327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023160

RESUMO

Next generation sequencing (NGS) is a technology that broadens the horizon of knowledge of several somatic pathologies, especially in oncological and oncohematological pathology. In the case of NHL, the understanding of the mechanisms of tumorigenesis, tumor proliferation and the identification of genetic markers specific to different lymphoma subtypes led to more accurate classification and diagnosis. Similarly, the data obtained through NGS allowed the identification of recurrent somatic mutations that can serve as therapeutic targets that can be inhibited and thus reducing the rate of resistant cases. The article's purpose is to offer a comprehensive overview of the best ways of integrating of next-generation sequencing technologies for diagnosis, prognosis, classification, and selection of optimal therapy from the perspective of tailor-made medicine.

6.
Hemasphere ; 7(10): e961, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37841754

RESUMO

Myelodysplastic neoplasms (MDS) are a heterogeneous group of hematological stem cell disorders characterized by dysplasia, cytopenias, and increased risk of acute leukemia. As prognosis differs widely between patients, and treatment options vary from observation to allogeneic stem cell transplantation, accurate and precise disease risk prognostication is critical for decision making. With this aim, we retrieved registry data from MDS patients from 90 Spanish institutions. A total of 7202 patients were included, which were divided into a training (80%) and a test (20%) set. A machine learning technique (random survival forests) was used to model overall survival (OS) and leukemia-free survival (LFS). The optimal model was based on 8 variables (age, gender, hemoglobin, leukocyte count, platelet count, neutrophil percentage, bone marrow blast, and cytogenetic risk group). This model achieved high accuracy in predicting OS (c-indexes; 0.759 and 0.776) and LFS (c-indexes; 0.812 and 0.845). Importantly, the model was superior to the revised International Prognostic Scoring System (IPSS-R) and the age-adjusted IPSS-R. This difference persisted in different age ranges and in all evaluated disease subgroups. Finally, we validated our results in an external cohort, confirming the superiority of the Artificial Intelligence Prognostic Scoring System for MDS (AIPSS-MDS) over the IPSS-R, and achieving a similar performance as the molecular IPSS. In conclusion, the AIPSS-MDS score is a new prognostic model based exclusively on traditional clinical, hematological, and cytogenetic variables. AIPSS-MDS has a high prognostic accuracy in predicting survival in MDS patients, outperforming other well-established risk-scoring systems.

8.
Cancer Rep (Hoboken) ; 6(10): e1881, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37553891

RESUMO

BACKGROUND: In myelofibrosis (MF), new model scores are continuously proposed to improve the ability to better identify patients with the worst outcomes. In this context, the Artificial Intelligence Prognostic Scoring System for Myelofibrosis (AIPSS-MF), and the Response to Ruxolitinib after 6 months (RR6) during the ruxolitinib (RUX) treatment, could play a pivotal role in stratifying these patients. AIMS: We aimed to validate AIPSS-MF in patients with MF who started RUX treatment, compared to the standard prognostic scores at the diagnosis and the RR6 scores after 6 months of treatment. METHODS AND RESULTS: At diagnosis, the AIPSS-MF performs better than the widely used IPSS for primary myelofibrosis (C-index 0.636 vs. 0.596) and MYSEC-PM for secondary (C-index 0.616 vs. 0.593). During RUX treatment, we confirmed the leading role of RR6 in predicting an inadequate response by these patients to JAKi therapy compared to AIPSS-MF (0.682 vs. 0.571). CONCLUSION: The new AIPSS-MF prognostic score confirms that it can adequately stratify this subgroup of patients already at diagnosis better than standard models, laying the foundations for new prognostic models developed tailored to the patient based on artificial intelligence.


Assuntos
Mielofibrose Primária , Humanos , Prognóstico , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/complicações , Inteligência Artificial , Aprendizado de Máquina
9.
Front Oncol ; 13: 1157646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188190

RESUMO

Diffuse Large B-cell Lymphoma (DLBCL) is the most common type of aggressive lymphoma. Approximately 60% of fit patients achieve curation with immunochemotherapy, but the remaining patients relapse or have refractory disease, which predicts a short survival. Traditionally, risk stratification in DLBCL has been based on scores that combine clinical variables. Other methodologies have been developed based on the identification of novel molecular features, such as mutational profiles and gene expression signatures. Recently, we developed the LymForest-25 profile, which provides a personalized survival risk prediction based on the integration of transcriptomic and clinical features using an artificial intelligence system. In the present report, we studied the relationship between the molecular variables included in LymForest-25 in the context of the data released by the REMoDL-B trial, which evaluated the addition of bortezomib to the standard treatment (R-CHOP) in the upfront setting of DLBCL. For this, we retrained the machine learning model of survival on the group of patients treated with R-CHOP (N=469) and then made survival predictions for those patients treated with bortezomib plus R-CHOP (N=459). According to these results, the RB-CHOP scheme achieved a 30% reduction in the risk of progression or death for the 50% of DLBCL patients at higher molecular risk (p-value 0.03), potentially expanding the effectiveness of this treatment to a wider patient population as compared with other previously defined risk groups.

10.
Hemasphere ; 7(1): e818, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36570691

RESUMO

Myelofibrosis (MF) is a myeloproliferative neoplasm (MPN) with heterogeneous clinical course. Allogeneic hematopoietic cell transplantation remains the only curative therapy, but its morbidity and mortality require careful candidate selection. Therefore, accurate disease risk prognostication is critical for treatment decision-making. We obtained registry data from patients diagnosed with MF in 60 Spanish institutions (N = 1386). These were randomly divided into a training set (80%) and a test set (20%). A machine learning (ML) technique (random forest) was used to model overall survival (OS) and leukemia-free survival (LFS) in the training set, and the results were validated in the test set. We derived the AIPSS-MF (Artificial Intelligence Prognostic Scoring System for Myelofibrosis) model, which was based on 8 clinical variables at diagnosis and achieved high accuracy in predicting OS (training set c-index, 0.750; test set c-index, 0.744) and LFS (training set c-index, 0.697; test set c-index, 0.703). No improvement was obtained with the inclusion of MPN driver mutations in the model. We were unable to adequately assess the potential benefit of including adverse cytogenetics or high-risk mutations due to the lack of these data in many patients. AIPSS-MF was superior to the IPSS regardless of MF subtype and age range and outperformed the MYSEC-PM in patients with secondary MF. In conclusion, we have developed a prediction model based exclusively on clinical variables that provides individualized prognostic estimates in patients with primary and secondary MF. The use of AIPSS-MF in combination with predictive models that incorporate genetic information may improve disease risk stratification.

11.
Front Oncol ; 12: 968340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059646

RESUMO

Risk stratification in acute myeloid leukemia (AML) has been extensively improved thanks to the incorporation of recurrent cytogenomic alterations into risk stratification guidelines. However, mortality rates among fit patients assigned to low or intermediate risk groups are still high. Therefore, significant room exists for the improvement of AML prognostication. In a previous work, we presented the Stellae-123 gene expression signature, which achieved a high accuracy in the prognostication of adult patients with AML. Stellae-123 was particularly accurate to restratify patients bearing high-risk mutations, such as ASXL1, RUNX1 and TP53. The intention of the present work was to evaluate the prognostic performance of Stellae-123 in external cohorts using RNAseq technology. For this, we evaluated the signature in 3 different AML cohorts (2 adult and 1 pediatric). Our results indicate that the prognostic performance of the Stellae-123 signature is reproducible in the 3 cohorts of patients. Additionally, we evidenced that the signature was superior to the European LeukemiaNet 2017 and the pediatric clinical risk scores in the prediction of survival at most of the evaluated time points. Furthermore, integration with age substantially enhanced the accuracy of the model. In conclusion, Stellae-123 is a reproducible machine learning algorithm based on a gene expression signature with promising utility in the field of AML.

13.
Hemasphere ; 6(8): e760, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35935610

RESUMO

A growing need to evaluate risk-adapted treatments in multiple myeloma (MM) exists. Several clinical and molecular scores have been developed in the last decades, which individually explain some of the variability in the heterogeneous clinical behavior of this neoplasm. Recently, we presented Iacobus-50 (IAC-50), which is a machine learning-based survival model based on clinical, biochemical, and genomic data capable of risk-stratifying newly diagnosed MM patients and predicting the optimal upfront treatment scheme. In the present study, we evaluated the prognostic value of the IAC-50 gene expression signature in an external cohort composed of patients from the Total Therapy trials 3, 4, and 5. The prognostic value of IAC-50 was validated, and additionally we observed a better performance in terms of progression-free survival and overall survival prediction compared with the UAMS70 gene expression signature. The combination of the IAC-50 gene expression signature with traditional prognostic variables (International Staging System [ISS] score, baseline B2-microglobulin, and age) improved the performance well above the predictability of the ISS score. IAC-50 emerges as a powerful risk stratification model which might be considered for risk stratification in newly diagnosed myeloma patients, in the context of clinical trials but also in real life.

14.
Front Oncol ; 12: 882531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530329

RESUMO

Background: Experience with immune checkpoint inhibitors (ICIs) in the treatment of acute myeloid leukemia (AML) is still limited and based on early clinical trials, with no reported randomized clinical data. In this study, we reviewed the available evidence on the use of ICIs, either in monotherapy or in combination with other treatments, in different AML settings, including newly diagnosed AML, relapsed or refractory (R/R) AML and maintenance treatment after allogeneic-HSCT (allo-HSCT). Materials and Methods: A systematic literature review was conducted using PubMed electronic database as primary source to identify the studies involving immune checkpoint inhibitors in first-line and R/R AML. We recorded Overall Response (ORR), Complete Response (CR) and Complete Response with incomplete count recovery (CRi) rates, overall survival (OS) and immune-related adverse events ≥ grade 3 (irAEs). Hereafter, we analyzed the overall profile of these ICIs by performing a meta-analysis of the reported outcomes. Results: A total of 13 studies were identified where ICI was used in patients with AML. ORR across these studies was 42% (IC95%, 31% - 54%) and CR/CRi was 33% (IC95%, 22%-45%). Efficacy was also assessed considering the AML setting (first-line vs. relapsed/refractory) and results pointed to higher response rates in first-line, compared to R/R. Mean overall survival was 8.9 months [median 8 months, (IC95%, 3.9 - 15.5)]. Differences between first line and R/R settings were observed, since average overall survival in first line was 12.0 months, duplicating the OS in R/R which was 7.3 months. Additionally, the most specific adverse events (AEs) of these therapies are immune-related adverse events (irAEs), derived from their inflammatory effects. Grade ≥3 irAEs rate was low and similar among studies [12% (95%CI 8% - 16%)]. Conclusion: ICIs in combination with intensive chemotherapy, hypomethylating agents or other targeted therapies are gaining interest in the management of hematological malignancies such as AML. However, results obtained from clinical trials are modest and limited by both, the type of design and the clinical trial phase. Hopefully, the prospective study of these therapies in late-stage development could help to identify patients who may benefit from ICI therapy.

15.
Blood Cancer J ; 12(4): 76, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468898

RESUMO

The International Staging System (ISS) and the Revised International Staging System (R-ISS) are commonly used prognostic scores in multiple myeloma (MM). These methods have significant gaps, particularly among intermediate-risk groups. The aim of this study was to improve risk stratification in newly diagnosed MM patients using data from three different trials developed by the Spanish Myeloma Group. For this, we applied an unsupervised machine learning clusterization technique on a set of clinical, biochemical and cytogenetic variables, and we identified two novel clusters of patients with significantly different survival. The prognostic precision of this clusterization was superior to those of ISS and R-ISS scores, and appeared to be particularly useful to improve risk stratification among R-ISS 2 patients. Additionally, patients assigned to the low-risk cluster in the GEM05 over 65 years trial had a significant survival benefit when treated with VMP as compared with VTD. In conclusion, we describe a simple prognostic model for newly diagnosed MM whose predictions are independent of the ISS and R-ISS scores. Notably, the model is particularly useful in order to re-classify R-ISS score 2 patients in 2 different prognostic subgroups. The combination of ISS, R-ISS and unsupervised machine learning clusterization brings a promising approximation to improve MM risk stratification.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/epidemiologia , Estadiamento de Neoplasias , Prognóstico , Medição de Risco , Aprendizado de Máquina não Supervisionado
16.
Hemasphere ; 6(4): e706, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35392483

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Despite notable therapeutic advances in the last decades, 30%-40% of affected patients develop relapsed or refractory disease that frequently precludes an infamous outcome. With the advent of new therapeutic options, it becomes necessary to predict responses to the standard treatment based on rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). In a recent communication, we presented a new machine learning model (LymForest-25) that was based on 25 clinical, biochemical, and gene expression variables. LymForest-25 achieved high survival prediction accuracy in patients with DLBCL treated with upfront immunochemotherapy. In this study, we aimed to evaluate the performance of the different features that compose LymForest-25 in a new UK-based cohort, which contained 481 patients treated with upfront R-CHOP for whom clinical, biochemical and gene expression information for 17 out of 19 transcripts were available. Additionally, we explored potential improvements based on the integration of other gene expression signatures and mutational clusters. The validity of the LymForest-25 gene expression signature was confirmed, and indeed it achieved a substantially greater precision in the estimation of mortality at 6 months and 1, 2, and 5 years compared with the cell-of-origin (COO) plus molecular high-grade (MHG) classification. Indeed, this signature was predictive of survival within the MHG and all COO subgroups, with a particularly high accuracy in the "unclassified" group. Integration of this signature with the International Prognostic Index (IPI) score provided the best survival predictions. However, the increased performance of molecular models with the IPI score was almost exclusively restricted to younger patients (<70 y). Finally, we observed a tendency towards an improved performance by combining LymForest-25 with the LymphGen mutation-based classification. In summary, we have validated the predictive capacity of LymForest-25 and expanded the potential for improvement with mutation-based prognostic classifications.

17.
Clin Cancer Res ; 28(12): 2598-2609, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35063966

RESUMO

PURPOSE: Undetectable measurable residual disease (MRD) is a surrogate of prolonged survival in multiple myeloma. Thus, treatment individualization based on the probability of a patient achieving undetectable MRD with a singular regimen could represent a new concept toward personalized treatment, with fast assessment of its success. This has never been investigated; therefore, we sought to define a machine learning model to predict undetectable MRD at the onset of multiple myeloma. EXPERIMENTAL DESIGN: This study included 487 newly diagnosed patients with multiple myeloma. The training (n = 152) and internal validation cohorts (n = 149) consisted of 301 transplant-eligible patients with active multiple myeloma enrolled in the GEM2012MENOS65 trial. Two external validation cohorts were defined by 76 high-risk transplant-eligible patients with smoldering multiple myeloma enrolled in the Grupo Español de Mieloma(GEM)-CESAR trial, and 110 transplant-ineligible elderly patients enrolled in the GEM-CLARIDEX trial. RESULTS: The most effective model to predict MRD status resulted from integrating cytogenetic [t(4;14) and/or del(17p13)], tumor burden (bone marrow plasma cell clonality and circulating tumor cells), and immune-related biomarkers. Accurate predictions of MRD outcomes were achieved in 71% of cases in the GEM2012MENOS65 trial (n = 214/301) and 72% in the external validation cohorts (n = 134/186). The model also predicted sustained MRD negativity from consolidation onto 2 years maintenance (GEM2014MAIN). High-confidence prediction of undetectable MRD at diagnosis identified a subgroup of patients with active multiple myeloma with 80% and 93% progression-free and overall survival rates at 5 years. CONCLUSIONS: It is possible to accurately predict MRD outcomes using an integrative, weighted model defined by machine learning algorithms. This is a new concept toward individualized treatment in multiple myeloma. See related commentary by Pawlyn and Davies, p. 2482.


Assuntos
Mieloma Múltiplo , Idoso , Biomarcadores , Humanos , Aprendizado de Máquina , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Neoplasia Residual/diagnóstico , Taxa de Sobrevida
18.
Expert Rev Hematol ; 14(9): 851-865, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34424108

RESUMO

Introduction: Acute myeloblastic leukemia (AML) is the most frequent type of acute leukemia in adults with an incidence of 4.2 cases per 100,000 inhabitants and poor 5-year survival. Patients with mutations in the FMS-like tyrosine kinase 3 (FLT3) gene have poor survival and higher relapse rates compared with wild-type cases.Areas covered: Several FLT3 inhibitors have been proved in FLT3mut AML patients, with differences in their pharmacokinetics, kinase inhibitory and adverse events profiles. First-generation multi-kinase inhibitors (midostaurin, sorafenib, lestaurtinib) target multiple proteins, whereassecond-generation inhibitors (crenolanib, quizartinib, gilteritinib) are more specific and potent inhibitors of FLT3, so they are associated with less off-target toxic effects. All of these drugs have primary and acquired mechanisms of resistance, and therefore their combinations with other drugs (checkpoint inhibitors, hypomethylating agents, standard chemotherapy) and its application in different clinical settings are under study.Expert opinion: The recent clinical development of various FLT3 inhibitors for the treatment of FLT3mut AML is an effective therapeutic strategy. However, there are unique toxicities and drug-drug interactions that need to be resolved. It is necessary to understand the mechanisms of toxicity in order to recognize and manage them adequately.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/efeitos adversos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Inibidores de Proteínas Quinases/efeitos adversos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética
19.
Leukemia ; 35(10): 2924-2935, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34007046

RESUMO

Multiple myeloma (MM) remains mostly an incurable disease with a heterogeneous clinical evolution. Despite the availability of several prognostic scores, substantial room for improvement still exists. Promising results have been obtained by integrating clinical and biochemical data with gene expression profiling (GEP). In this report, we applied machine learning algorithms to MM clinical and RNAseq data collected by the CoMMpass consortium. We created a 50-variable random forests model (IAC-50) that could predict overall survival with high concordance between both training and validation sets (c-indexes, 0.818 and 0.780). This model included the following covariates: patient age, ISS stage, serum B2-microglobulin, first-line treatment, and the expression of 46 genes. Survival predictions for each patient considering the first line of treatment evidenced that those individuals treated with the best-predicted drug combination were significantly less likely to die than patients treated with other schemes. This was particularly important among patients treated with a triplet combination including bortezomib, an immunomodulatory drug (ImiD), and dexamethasone. Finally, the model showed a trend to retain its predictive value in patients with high-risk cytogenetics. In conclusion, we report a predictive model for MM survival based on the integration of clinical, biochemical, and gene expression data with machine learning tools.


Assuntos
Algoritmos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Aprendizado de Máquina , Mieloma Múltiplo/mortalidade , Estudos de Coortes , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Prognóstico , Taxa de Sobrevida
20.
PLoS One ; 16(5): e0248886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33945543

RESUMO

B-cell lymphoproliferative disorders exhibit a diverse spectrum of diagnostic entities with heterogeneous behaviour. Multiple efforts have focused on the determination of the genomic drivers of B-cell lymphoma subtypes. In the meantime, the aggregation of diverse tumors in pan-cancer genomic studies has become a useful tool to detect new driver genes, while enabling the comparison of mutational patterns across tumors. Here we present an integrated analysis of 354 B-cell lymphoid disorders. 112 recurrently mutated genes were discovered, of which KMT2D, CREBBP, IGLL5 and BCL2 were the most frequent, and 31 genes were putative new drivers. Mutations in CREBBP, TNFRSF14 and KMT2D predominated in follicular lymphoma, whereas those in BTG2, HTA-A and PIM1 were more frequent in diffuse large B-cell lymphoma. Additionally, we discovered 31 significantly mutated protein networks, reinforcing the role of genes such as CREBBP, EEF1A1, STAT6, GNA13 and TP53, but also pointing towards a myriad of infrequent players in lymphomagenesis. Finally, we report aberrant expression of oncogenes and tumor suppressors associated with novel noncoding mutations (DTX1 and S1PR2), and new recurrent copy number aberrations affecting immune check-point regulators (CD83, PVR) and B-cell specific genes (TNFRSF13C). Our analysis expands the number of mutational drivers of B-cell lymphoid neoplasms, and identifies several differential somatic events between disease subtypes.


Assuntos
Genoma Humano , Leucemia de Células B/genética , Linfoma de Células B/genética , Mutação , Proteína de Ligação a CREB/genética , Proteínas de Ligação a DNA/genética , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Redes Reguladoras de Genes , Humanos , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Fator de Transcrição STAT6/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA